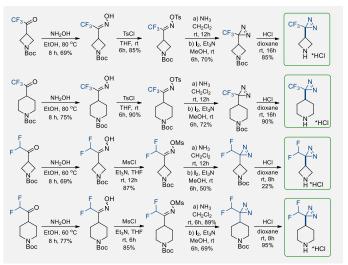
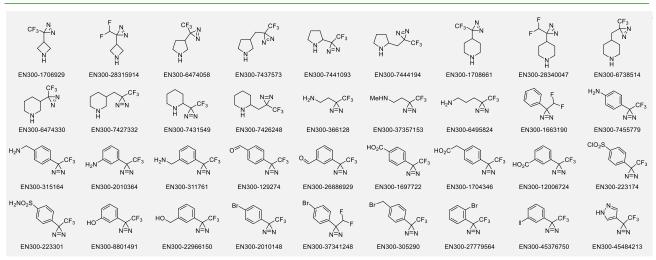


CF₃-Diazirines for photoaffinity labeling

Y. Kornii, O. Shablykin, T. Tarasiuk, O. Stepaniuk, V. Matvienko, D. Aloshyn, N. Zahorodniuk, I. V. Sadkova, P. K. Mykhailiuk


Introduction and Aim

In 1980, Brunner demonstrated that the CF3-substituted aromatic diazirines were more useful as photoaffinity labels, because the undesired isomerization products - CF₃-diazo compounds CF₃C(N₂)Ar, - were inert and did not cause the non-selective labeling. 1-3 Unexpectedly, chemists almost did not use aliphatic trifluoromethyl diazirines before. Moreover, these compounds were mostly unknown from the synthetic standpoint. We addressed this gap in chemistry: we elaborated a general practical method for trifluoromethyl and difluoromethyl aliphatic diazirines.4


Synthesis

Photolabeling experiment

CF3-group: stable λ=350 nm 5% λ=310 nm n.d. NHAc CF₃ ОН CH₃CN/H₂O 30-60 min λ=350 nm 57% 32% λ=310 nm n.d. Photolabeling experiment of CF3-diazirine A in different solvents

Results

Contact

pavel.mykhailiuk@gmail.com, mykhailiukchem.org Enamine Ltd, www.enamine.net 78 Chervonotkatska St, 02094, Kyiv, Ukraine

References

- 1. M. Nassal. J. Am. Chem. Soc. 1984, 106, 7540-7545. P. Šimon et al. ACS Chem. Biol. 2018, 13, 12, 3333–3342
 J. B. Geri et al. Science 2020, 367, 1091-1097.
- 4. Y. Kornii et al. J. Org. Chem. 2023, 88, 11-17.